

151

2025

346 (BCG)

भौतिक विज्ञान
Physics

समय : 3 घण्टे, 15 मिनट

Time: 3 Hours, 15 Minutes

पूर्णांक : 70

Maximum Marks: 70

नोट - प्रारम्भ के 15 मिनट परीक्षार्थीयों को प्रश्नपत्र पढ़ने के लिए निर्धारित हैं।

1. सभी प्रश्न अनिवार्य हैं।
2. इस प्रश्न पत्र में 5 खण्ड हैं। खण्ड 'अ', खण्ड 'ब', खण्ड 'स', खण्ड 'द', तथा खण्ड 'य'।
3. खण्ड 'अ' में बहुविकल्पीय प्रश्न हैं तथा प्रत्येक प्रश्न 1 अंक का है।
4. खण्ड 'ब' में अति लघु उत्तरीय प्रश्न हैं तथा प्रत्येक प्रश्न 1 अंक का है।
5. खण्ड 'स' में लघु उत्तरीय-I प्रकार के प्रश्न हैं तथा प्रत्येक प्रश्न 2 अंक का है।
6. खण्ड 'द' में लघु उत्तरीय-II प्रकार के प्रश्न हैं तथा प्रत्येक प्रश्न 3 अंक का है।
7. खण्ड 'य' में दीर्घ उत्तरीय प्रश्न हैं तथा प्रत्येक प्रश्न 5 अंक का है।
8. प्रश्न में प्रयुक्त प्रतीकों के सामान्य अर्थ है।

Notes - First 15 minutes are allotted for the candidates to read the question paper.

1. All questions are **compulsory**.
2. This question paper has 5 sections; Section-A, Section-B, Section-C, Section-D and Section-E.
3. Section-A is Multiple Choice type and each question carries 1 mark.
4. Section-B is of Very Short Answer type questions and each question carries 1 mark.
5. Section-C is of Short Answer-I type questions and each question carries 2 marks.
6. Section-D is of Short Answer-II type questions and each question carries 3 marks.
7. Section-E is of Long Answer type questions and each question carries 5 marks.
8. Symbols used in the question paper have general meaning.

खण्ड - 'अ'

Section-A

1. (a) निम्न में कौनसा विद्युत क्षेत्र का मात्रक नहीं है? (1)

(i) न्यूटन/कूलंब	(ii) वोल्ट/मीटर
(iii) जूल/कूलंब	(iv) जूल/कूलंब मीटर

Which of the following is NOT a unit of electric field?

(i) newton/coulomb	(ii) volt/meter
(iii) Joule/coulomb	(iv) Joule/coulomb meter

(b) एक समान चुम्बकीय क्षेत्र \vec{B} में बल रेखाओं के समान्तर एक इलेक्ट्रॉन (आवेश e) नियत वेग v से चलता है। इलेक्ट्रॉन पर लगनेवाला बल है - (1)

(i) evB	(ii) शून्य
(iii) $evB \sin \theta$	(iv) $\frac{ev}{B}$

Parallel to the lines of force in a uniform magnetic field \vec{B} , an electron (charge e) moves with constant velocity v . The force acting on the electron is

(i) evB	(ii) Zero
(iii) $evB \sin \theta$	(iv) $\frac{ev}{B}$

(c) लेन्ज का नियम किस संरक्षण नियम पर आधारित है? (1)

(i) आवेश	(ii) द्रव्यमान
(iii) संवेग	(iv) ऊर्जा

Lenz's law is based on which law of conservation of the following?

(i) Charge	(ii) Mass
(iii) Momentum	(iv) Energy

(d) 40 सेमी फोकल दूरी के उत्तल लैन्स को 25 सेमी फोकल दूरी के अवतल लैन्स के सम्पर्क में रखने पर बने लैन्स युग्म की समता होगी - (1)

(i) -1.5 D	(ii) $+1.5 \text{ D}$
(iii) $+6.67 \text{ D}$	(iv) -6.67 D

A convex lens of focal length 40 cm is placed in contact with a concave lens of 25 cm focal lengths. The power of the lens pair will be :

(i) -1.5 D	(ii) $+1.5 \text{ D}$
(iii) $+6.67 \text{ D}$	(iv) -6.67 D

(c) गतिमान आवेशित कण से सबछद डी.ब्रोगली तरंग की तरंग दैर्घ्य कण के निर्भर करती । (1)

(i) द्रव्यमान पर (ii) आवेश पर
 (iii) वेग पर (iv) उपरोक्त सभी पर

The wavelength of the deBroglie wave associated with a moving charged particle depends

(i) on mass (ii) on charge
 (iii) on velocity (iv) on all the three

(f) अर्धचालकों की चालकता (1)

(i) ताप पर निर्भर नहीं करती । (ii) ताप के अधिक होने पर बढ़ती है ।
 (iii) ताप के कम होने पर बढ़ती है । (iv) ताप बढ़ने पर पहले बढ़ती है, फिर घटने लगती है ।

Conductivity of semiconductors

(i) does not depend on temperature.
 (ii) increases on increasing temperature.
 (iii) increases on decreasing temperature.
 (iv) as temperature increases, it first increases and then starts decreasing.

खण्ड - 'ब'

Section-B

2. (a) ओहम के नियम की सीमाएँ लिखिए । (1)

Write the limitations of Ohm's law.

(b) L-C-R परिपथ के लिए शक्ति गुणांक का व्यंजक लिखिए । (1)

Write the expression for power factor for L-C-R circuit.

(c) किसी परिपथ में 0.1 सेकेण्ड में धारा 5.0 A से 0.0 A तक गिरती है । यदि औसत प्रेरित विद्युत वाहक बल 100 V है, तब परिपथ में स्वप्रेरकत्व का आंकलन कीजिए । (1)

In a circuit the current drops from 5.0 A to 0.0 A in 0.1 sec. If the average induced emf is 100 V, then calculate the self inductance in the circuit.

(d) विद्युत चुम्बकीय स्पैक्ट्रम में सबसे बड़ी तथा सबसे छोटी तरंग के दैर्घ्य तरंगों के नाम बताइए । (1)

Name the waves of the longest and the shortest wavelengths in the electromagnetic spectrum.

(c) हाइड्रोजन परमाणु में अंतर्राम इलेक्ट्रॉन कक्षा की त्रिज्या $5.3 \times 10^{-11} \text{ m}$ है। कक्षा $n = 2$ की त्रिज्या क्या होगी? (1)

The radius of the innermost electron orbit in hydrogen atom is $5.3 \times 10^{-11} \text{ m}$. What is the radius of the orbit $n = 2$?

(f) आईन्स्टाईन का प्रकाश विद्युत समीकरण लिखिए। (1)

Write Einstein's photoelectric equation.

खण्ड - 'स'

Section-C

3. (a) 2Ω , 3Ω तथा 5Ω के तीन प्रतिरोध 10 बोल्ट की बैटरी से समांतर क्रम में जुड़े हैं। 3Ω के प्रतिरोध में प्रवाहित धारा की गणना कीजिए। (2)

Three resistors of 2Ω , 3Ω and 5Ω are joined in parallel with a battery of 10 volt.

Calculate the current flowing in 3Ω resistor.

(b) विराम अवस्था में इलेक्ट्रॉन के द्रव्यमान की तुल्य ऊर्जा की गणना MeV में कीजिए। (2)

विराम अवस्था में e का द्रव्यमान $9.1 \times 10^{-31} \text{ Kg}$ है।

Calculate the equivalent energy of the electron in the rest state in MeV. The mass of the electron in the rest state is $9.1 \times 10^{-31} \text{ Kg}$.

(c) यदि अर्ध तरंग दिष्टकारी में निवेश आवृत्ति 50 Hz है, तो निर्गम आवृत्ति क्या होगी? (2)
समान निवेश आवृत्ति हेतु पूर्ण तरंग दिष्टकारी की निर्गम आवृत्ति क्या होगी?

In half wave rectifier if the input frequency is 50 Hz , what will be the output frequency? What will be the output frequency of a full wave rectifier of the same input frequency?

(d) सम विभव पृष्ठ किसे कहते हैं? समविभव पृष्ठ की दो विशेषताएँ लिखिए। (2)

What is an equipotential surface? Write two characteristics of an equipotential surface.

खण्ड - 'द'

Section-D

4. (a) प्रिज्म के पदार्थ के अपवर्तनांक का सूत्र अल्पतम विचलन कोण एवं प्रिज्म कोण के पदों में निर्गमित कीजिए। (3)

Derive the formula of refractive index of the prism material in terms of minimum deviation angle and prism angle.

(b) दिखाइए की विद्युत शक्ति P द्वारा किसी पदार्थ के एकांक आयतन में प्रति सेकेण्ड उत्पन्न उष्मा $J^2 \rho$ या E^2 / ρ होती है। जहाँ 'ρ' विशिष्ट प्रतिरोध, J धारा घनत्व तथा E विद्युत क्षेत्र की तीव्रता है।

Show that the heat produced per sec in the unit volume of a substance by electric power P is $J^2 \rho$ or E^2 / ρ . Where 'ρ' is the specific resistance, J is the current density and E is the electric field intensity.

(c) किसी निर्धारित स्थान पर पृथ्वी के चुम्बकीय क्षेत्र का क्षेत्रिय घटक $3.0 \times 10^{-5} T$ है तथा इस क्षेत्र की दिशा भौगोलिक दक्षिण से भौगोलिक उत्तर की ओर है। किसी अत्यधिक लम्बे सीधे चालक से $1 A$ की अपरिवर्ती धारा प्रवाहित हो रही है। जब यह तार किसी क्षेत्रिज मेज पर रखी है तथा विद्युत धारा के प्रवाह की दिशाएँ (a) पूर्व से पश्चिम, (b) दक्षिण से उत्तर की ओर है, तब तार की प्रति एकांक लम्बाई पर कितना बल होगा?

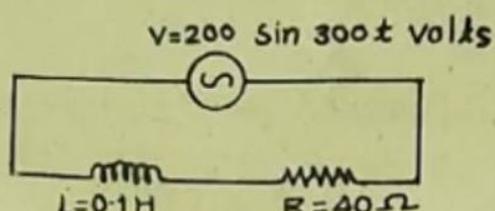
The horizontal component of earth's magnetic field at a place is $3.0 \times 10^{-5} T$ and direction of the magnetic field is from geographic south to geographic north. A constant current of $1 A$ is flowing in a very long straight conductor. When this wire is placed in a horizontal table and the direction of flow of the current is (a) east to west (b) south to north, then what will be the force per unit length of the wire?

(d) किसी कुण्डली में चुम्बकीय फ्लक्स निम्न समीकरण के अनुसार समय t के साथ बदल रहा है, जहाँ चुम्बकीय फ्लक्स $\phi_B = 4t^2 + 10t + 5$ मिली.वेबर है। 3 सेकेण्ड के बाद कुण्डली में प्रेरित विद्युतवाहक बल की गणना कीजिए।

In a coil, magnetic flux changes with time t where magnetic flux, $\phi_B = 4t^2 + 10t + 5$ millimeter. Calculate the induced emf in the coil after 3 sec.

(e) देहली तरंगदैर्घ्य किसे कहते हैं? सोडियम धातु से एक इलैक्ट्रॉन निकालने के लिए 2.3 eV ऊर्जा की आवश्यकता होती है। क्या 6800 \AA तरंगदैर्घ्यवाले नारंगी प्रकाश द्वारा सोडियम पर प्रकाश विद्युत प्रभाव उत्पन्न होगा?

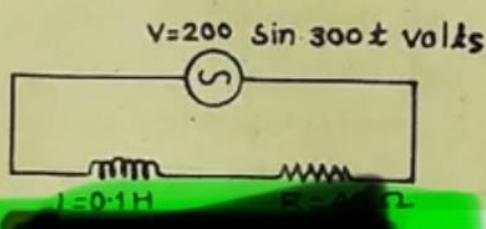
What is threshold wavelength? To remove one electron from sodium metal 2.3 eV energy is required. Will photoelectric effect be produced by orange light of 6800 \AA wavelength?


5. (a) चुम्बकीय द्विपूर्व आधूर्ण की परिभाषा लिखिए। यह अदिश राशि है या सदिश? इसका मात्रक लिखिए। (3)

Write the definition of magnetic dipole moment. Is it a scalar quantity or a vector?
Write its unit.

(b) निम्न प्रत्यावर्ती धारा परिपथ में धारा तथा परिपथ का शक्ति गुणांक ज्ञात कीजिए। (3)

अथवा


अन्योन्य प्रेरण से क्या तात्पर्य है? यदि किसी प्राथमिक कुण्डली में 3.0 A की धारा 0.001 s में शून्य कर दी जाए तो द्वितीयक कुण्डली में 15 kV का प्रेरित विद्युतवाहक बल उत्पन्न होता है। कुण्डलियों के बीच अन्योन्य प्रेरण गुणांक ज्ञात कीजिए।

In the following alternating current circuit, find the current and power factor of the circuit.

OR

What is meant by mutual induction? If current of 3.0 A is zero in 0.001 s in a primary coil, then induced emf in secondary coil is 15 kV . Find a coefficient of mutual inductance between the coils

(c) 25 MHz आवृत्ति की एक समतल विद्युत चुम्बकीय तरंग निर्वात में x दिशा के अनुदिश गतिमान है। दिक्काल (space) में किसी विशिष्ट बिन्दु पर इसका विद्युत क्षेत्र $\vec{E} = 6.3\hat{J}\text{ N/c}$ है। इस बिन्दु पर चुम्बकीय क्षेत्र B का मान क्या होगा?

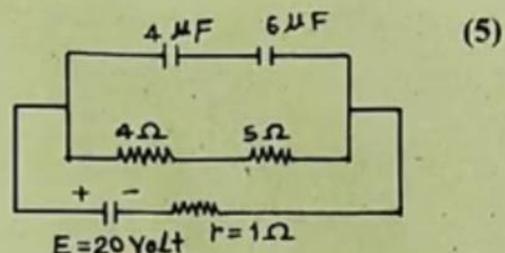
A plane electromagnetic wave of frequency 25 MHz is moving along the x direction in vacuum at a specific point in space. Its electric field is $\vec{E} = 6.3\hat{J}\text{ N/c}$. What will be the value of magnetic field B at this point?

(d) प्रकाश के व्यतिकरण से क्या तात्पर्य है? उदाहरण देते हुए समझाइए। व्यतिकरण के लिए आवश्यक प्रतिबंधों का उल्लेख कीजिए। (3)

What is meant by interference of light? Explain with examples. Mention the necessary limitations for interference.

(e) आईन्स्टाइन का प्रकाश विद्युत समीकरण लिखिए। तथा कार्यफलन एवं देहली तरंगदैर्घ्य की परिभाषा कीजिए। (3)

Write down Einstein's photo-electric equation. Define work function and threshold wavelength.


खण्ड - 'य'

Section-E

6. संधारित्र की धारिता किन कारकों पर निर्भर करती है?

दिये गये परिपथ में $4 \mu F$ संधारित्र पर संचित आवेश तथा $6 \mu F$ के संधारित्र की प्लेटों के बीच विभवांतर कितना होगा?

अथवा

गाउस का प्रमेय लिखिए। किसी प्लेट पर पृष्ठ आवेश का घनत्व $+1 \mu C/m^2$ है। प्लेट के समीप इसमें उत्पन्न विद्युत क्षेत्र की तीव्रता ज्ञात कीजिए, यदि प्लेट (i) अचालक पदार्थ, (ii) चालक पदार्थ की है।

On what factors does the capacity of a capacitor depend?

In the given circuit what is the stored charge on $4 \mu F$ capacitor and what will be the potential difference between the plates of $6 \mu F$ capacitor?

OR

Write Gauss' theorem. The surface charge density on the plate is $+1 \mu C/m^2$. Find the intensity of the electric field generated in it near the plate, if the plate is made of (i) non-conductor material, (ii) conducting material.

7. किसी गोलीय पृष्ठ पर प्रकाश के अपवर्तन के सूत्र का उपयोग करते हुए पतले लैन्स के लिए फोकस दूरी के सूत्र का निगमन कीजिए। (5)

अथवा

विवर्तन किसे कहते हैं? विवर्तन और व्यतिकरण में दो अन्तर लिखिए। प्रयोगशाला में एक रेखा छिद्र द्वारा प्रकाश का विवर्तन देखा जाता है। विवर्तन प्रतिरूप पर क्या प्रभाव पड़ेगा यदि-

- पहले से कम तरंगदैर्घ्य का प्रकाश प्रयुक्त किया जाए?
- रेखाछिद्र को कुछ और संकरा कर दिया जाए?

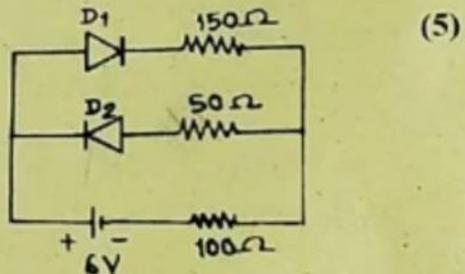
Using the formula of refraction of light on a spherical surface, derive the formula for the focal length for a thin lens.

OR

What is diffraction? Write two differences between diffraction and interference. In the laboratory, the diffraction of light is observed through a single slit. What effect will it have on the diffraction pattern, if (i) shorter wavelength of light is used? (ii) the slit is made narrower?

8. हाइड्रोजन परमाणु के लिए बोहर की परिकल्पनाएँ लिखिए। हाइड्रोजन परमाणु की n -वीं कक्षा में इलेक्ट्रॉन की ऊर्जा का सूत्र लिखिए। हाइड्रोजन परमाणु के प्रथम उत्तेजन विभव और आयतन विभव का मान ज्ञात कीजिए। (5)

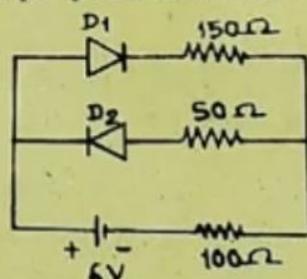
अथवा


नाभिकीय संलयन क्या है? इस प्रक्रिया द्वारा सूर्य में ऊर्जा कैसे उत्पन्न होती है? यदि ड्यूटीरियम (${}_1H^2$) तथा α -कण (${}_2He^4$) के लिए प्रति न्यूकिलऑन बन्धन ऊर्जाएँ क्रमशः B_1 और B_2 हो, तब ${}_1H^2 + {}_1H^2 \rightarrow {}_2He^4 + Q$ में मुक्त ऊर्जा Q का मान क्या होगा?

Write Bohr's postulates for hydrogen atom. Write the formula for the energy of electron in n^{th} -orbit of hydrogen atom. Find the value of first excitation potential and ionisation potential of hydrogen atom.

OR

What is nuclear fusion? By this process how is energy generated in the sun? If binding energy per nucleon for deuterium (${}_1H^2$) and α -particle (${}_2He^4$) are B_1 and B_2 respectively, what will be the value of released energy Q in ${}_1H^2 + {}_1H^2 \rightarrow {}_2He^4 + Q$?


9. p-n-सन्धि डायोड में अवक्षय परत तथा विभव प्राचीर कैसे बनते हैं? सन्धि को अग्र अभिनत या पश्च अभिनत करने पर इन पर क्या प्रभाव पड़ता है? दिये गये परिपथ में दोनों डायोडों में प्रत्येक का अग्र प्रतिरोध $50\ \Omega$ तथा पश्च प्रतिरोध अनन्त है। यदि बैटरी 6 वोल्ट की हो, तब $100\ \Omega$ के प्रतिरोध में धारा ज्ञात कीजिए।

अथवा

बायो-सेवर्ट का नियम क्या है? बायो सेवर्ट के नियम से विद्युत धारावाही वृत्ताकार कुण्डली के केन्द्र पर चुंबकीय क्षेत्र के लिए व्यंजक का निगमन कीजिए।

How are the depletion layer and potential barrier formed in a p-n-junction diode? What effect will be produced on depletion layer and potential barrier due to forward/reverse biasing? In the given circuit the forward resistance of both the diode is $50\ \Omega$ each and backward resistance is infinity. If battery is of 6 v, then find the current in $100\ \Omega$ resistor.

OR

What is Biot-Savart's law? According to Biot-Savart's law, derive the formula for the magnetic field at the centre of current carrying circular coil.